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Abstract

Purpose — We describe an intelligent video categorization engine (IVCE) that uses the learning
capability of artificial neural networks (ANNS) to classify suitably preprocessed video segments into a
predefined number of semantically meaningful events (categories).
Design/methodology/approach — We provide a survey of existing techniques that have been
proposed, either directly or indirectly, towards achieving intelligent video categorization. We also
compare the performance of two popular ANNs: Kohonen’s self-organizing map (SOM) and fuzzy
adaptive resonance theory (Fuzzy ART). In particular, the ANNs are trained offline to form the
necessary knowledge base prior to online categorization.

Findings — Experimental results show that accurate categorization can be achieved near
instantaneously.

Research limitations — The main limitation of this research is the need for a finite set of predefined
categories. Further research should focus on generalization of such techniques.

Originality/value — Machine understanding of video footage has tremendous potential for three
reasons. First, it enables interactive broadcast of video. Second, it allows unequal error protection for
different video shots/segments during transmission to make better use of limited channel resources.
Third, it provides intuitive indexing and retrieval for video-on-demand applications.
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Introduction

The ability of machines to extract semantically meaningful objects or events out of
video footage has tremendous potential applications including synchronization of
audio and visual (A-V) information (e.g. lip reading), optimal transmission of video
over band-limited channels, and object-based video clip indexing and retrieval
(e.g. finding specific frames in video footage).

In A-V data synchronization, the goal is to provide the viewer a natural feel in terms
of A-V sensation, e.g. when the video shows a person speaking. Unequal error
protection has been applied to transmission of scalable video to ensure an optimum
quality of service is provided at all times. With the advent of MPEG-4, which treats a
video frame as a composition of video objects (VOs), it is possible to apply unequal
error protection to different VOs according their relative importance. Also, one can



apply unequal error protection to different scenes according to their relative
importance.

Object-based indexing and retrieval can be used to facilitate video-on-demand
(VOD) applications allowing viewers to use high-level search queries. Currently,
typical search queries for video clips are by means of specification of low-level features
(e.g. color, brightness and texture information) (Deng and Manjunath, 1998) or by
example (Kung and Hwang, 1998).

Clearly, current technology is inadequate and machine understanding of video
footage could bring automation to the object-based indexing and retrieval processes.

However, achieving full machine understanding of video footage is far from trivial.
Since artificial neural networks (ANNs) can be trained to exhibit human-like
intelligence in object recognition and classification, we investigate two suitably trained
ANNs to categorize incoming video footage into a finite number of predefined
scenarios. In particular, we describe an intelligent video categorization engine (IVCE)
that enables a computer to attempt to make sense of scenes captured on video
near-instantaneously. For experimental purposes, we have predefined a number of
scenarios such as vehicle movement and certain human motions. A computer is trained
to categorize a temporal video segment into one of the predefined scenarios (events),
where a temporal video segment is defined as all frames F; such that ¢ is a finite integer
in the range L =7 = N, and a scene change is detected between frames F; _; and F},
and between frames Fy and Fy.1. These temporal video segments are commonly
referred to as video shots in the literature.

As shown in Figure 1, our IVCE comprises an offline training process and an
online categorization process. The purpose of the offline training process is to train
the ANNs using some training video footages to generate suitable ANN models for
subsequent categorization. Two ANNSs are investigated: Kohonen’s self-organizing
map (SOM) (Kohonen, 1995) and Fuzzy Adaptive Resonance Theory (Fuzzy ART)
(Carpenter et al, 1991). Both ANNs are used to form clusters based on a similarity
measure between different temporal video segments. In particular, members
within each cluster have maximal similarity among themselves and minimal
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similarity between them and other clusters. Once the clusters are formed, it is
necessary to provide cluster-to-category mapping for subsequent categorization.
During the online categorization process, incoming video footages are temporally
segmented and individually categorized into a predefined scenario using the
trained ANNs.

The rest of the paper is organized as follows. In the next section, we review existing
VO segmentation and motion tracking technologies reported in the literature. We then
survey statistical and neural network techniques for classification. The details of our
IVCE are then presented. This is followed by a discussion on experimental results.
Finally, we conclude the paper.

VO segmentation and motion tracking

Intra-frame VO segmentation and inter-frame motion tracking of the segmented
objects are key techniques required for a computer to extract semantic meanings from
the video footage. Current VO extraction techniques reported in the literature include
spatial and temporal operations. Virtually all techniques require some measure of
homogeneity, typically in terms of some low-level features such as grayscale, color and
texture. Spatial VO segmentation techniques, e.g. (Salembia ef al, 1995) treat each
video frame as a two-dimensional (2D) function f(x,y) and are generally derived from
classical image processing. However, a fundamental limitation of these techniques is
that homogeneous regions segmented by these techniques do not necessarily
correspond to semantically meaningful objects.

Compared to 2D still images, video provides a 3D of useful information in the time
domain. It is generally assumed that semantically meaningful objects have coherent
and homogeneous motions between video frames. Motion tracking provides important
information for segmentation of semantically meaningful objects across video frames,
which amounts to following the trajectory of a feature temporally across frames. It can
also provide useful information to estimate the current location of the tracked feature
based on previous frames. Sometimes, an entire region of interest (ROI) can be tracked,
but this approach tends to be compute-intensive. It is generally preferable to track
selected feature points, e.g. head top points (Shao et al., 2000) instead.

In addition, if the camera moves in relation to the scene it captures, the resultant
motions will become more complex for analysis. Under tightly controlled
studio environments, it is possible to use high-precision camera rotation and zoom
parameters to determine global motion due to camera movement, and the global
motion can then be cancelled accordingly (Zheng et al., 2001). However, we have not
adopted this approach in our research for generality. We apply global motion
compensation instead.

From the above discussion, we observe that both spatial and temporal methods are
useful for VO segmentation. In fact, most techniques reported in the literature employ a
combination of both approaches. Further, it appears that human intervention is mostly
necessary. The fundamental problem is that while humans can easily determine what
1s/is not semantically meaningful, it is not a trivial matter for a machine to perform
such tasks. For example, NeTra-V (Deng and Manjunath, 1998) is reported to perform
well using low-level content description, but still lacks high-level content description
capabilities. Overall, fully automated VO segmentation methods reported only operate
in very restrictive conditions and semiautomatic methods appear to be most promising



(Meier and Ngan, 1999). We therefore adopt a semiautomatic framework for VO
segmentation similar to (Gu and Lee, 1998), which involves some human intervention
for very reliable segmentation. In particular, the method requires active human
supervision during the segmentation of the /-frame for each shot. Thereafter, tracking
of the segmented objects is performed automatically for the remaining P-frames in the
shot. We take a different approach so that human intervention is limited to confirming
the correctness of the automatic spatio-temporal VO segmentation process. This high
level of reliability in VO segmentation is crucial for subsequent tracking and scenario
categorization.

Statistical and neural classification techniques

So-called intelligent classification techniques, such as K-nearest neighbor (KNN)
(Yang, 1999) and linear discriminant analysis (LDA) (Koehler and Erenguc, 1990), have
been developed to classify objects into different groups mainly according to the
statistical occurrence of sets of features. However, most of these techniques have been
developed for textual information. So, a challenge is to extract features to characterize
video footage. In addition, real-world video data maybe noisy and ill defined, they
cannot always be describable with linear or low-order statistical models. Thus, we need
some models that can tolerate data with noise while giving high performance in
classification. ANNs are robust enough to fit a wide range of distributions accurately
and have the ability to model any high degree exponential models (Dalton and
Deshmane, 1991). They can also exhibit human-like intelligence through generalization
of knowledge during a training process. In this research, we study the Kohonen’s SOM
(Kohonen, 1995; Flexer, 2001) and Fuzzy ART (Carpenter et al., 1991) ANN models for
video shot classification. In particular, we extract important features from training
video shots to form training exemplars for adapting the ANN to form ANN models
suitable for subsequent classification.

Kohonen’s self-organizing map

SOM (Kohonen, 1995; Flexer, 2001) is a competitive ANN that provides a topological
mapping from the input space to clusters. It provides a non-linear projection of the
input pattern space of arbitrary dimensionality onto a 1 or 2D array of neurons. The
array exists in a space that is separate from the input space, and any number of inputs
may be used as long as the number of inputs is greater than the dimensionality of the
output space.

Essentially, the SOM algorithm is a stochastic version of K-means clustering
method (Balakrishnan, 1994). The fundamental difference is that in the case of SOM,
the neighboring clusters are updated in addition to the winner clusters. The projection
makes the topological neighborhood relationship geometrically explicit. The network
tries to find clusters such that any two clusters that are close to each other in the output
space have input vectors that are close to each other as well. This is achieved by
finding the best output neuron while at the same time activating its spatial neighbors
to react to the same input vector. The SOM training algorithm is given in Figure 2.

Fuzzy adaptive resonance theory

Fuzzy ART (Carpenter et al, 1991) is an adaptive clustering technique originally
inspired by neurophysiology. Figure 3 shows the structure of the Fuzzy ART ANN,
which consists of three layers of nodes:
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Figure 2.
Training algorithm for
SOM

Step 1:  Initialize the weight vector of all the output neurons.

Step 2:  Determine the output winning neuron m by searching for the shortest normalized
Euclidean distance between the input vector and the weight vector of each output neuron.

[X-=W, |= min [X-W, |
jul..M

"

where X is the input vector,
W, is the weight vector of output neuron j, and
M is the total number of output neuron.

Step 3:  Let N, (1) denote a set of indices corresponding to a neighborhood size of the current
winner neuron m. The neighborhood size needs to be slowly decreased during the training
session. The weights of the weight vector associated with the winner neuron m and its
neighboring neurons are updated by

AW (1) = a()[X(1) - W, (1)] for j € N,(1)
where @ is a positive-valued learning factor, & € [0, 1]. It needs to be slowly decreased
with each training iteration.

Thus, the new weight vector is given by
W, +1) =W, (1) +a()[X() - W, (1)] for j € N,(1)

Steps 2 and 3 are repeated for every exemplar in the training set for a user-defined number of
iterations.

Figure 3.
Structure of the Fuzzy
ART network

F, J I J I M nodes

Input Vector

+ preprocessing layer Fy, which transforms the input pattern using complement
coding;

* category representation layer Fy, in which clusters are formed at the committed
nodes; and

+ input layer F;, which receives both bottom-up input pattern from F, layer and
top-down weights representing cluster seeds from F> layer.



For an input vector of M-dimensions, the number of nodes at the F, layer is M. After
going through complement coding, the input vector becomes 2)/-dimensional. Thus,
the F layer will need 2M nodes to receive the complement-coded vector. The Fs layer
comprises N nodes, where N is the maximum number of clusters that can be
accommodated by the network. Each of the NV nodes in Fy layer has an associated
weight vector, denoted by W; for the /' layer node j, of which the weights are those
that emanate from that Fs layer node and converge to all of the F; layer nodes. During
the learning process, a node at the Fy layer is committed if it has previously coded an
input pattern. Otherwise, it is uncommitted. Before training starts, the weights in the
weight vector of all Fy layer nodes are initialized to one and all F5 layer nodes are
uncommitted. When the learning process ends, clusters containing coded input
patterns are formed at all committed F» layer nodes.

Like other ART networks, Fuzzy ART can operate between plastic and stable
modes. Thus, it can still be trained whenever a new input pattern is fed to the network,
even the training session has already been completed previously. There are three
parameters that describe the dynamics of the network:

* choice parameter, a(a > 0), which alters the bottom-up inputs from all of the F}
layer nodes produced at each F5, layer node;

+ vigilance parameter, p(p € [0, 1]), which indicates the threshold level of how
close an input pattern must be to a stored cluster seed before a match is said to
occur. Higher values of p will result in more precise categorization of objects and
thus more F5 layer nodes will become committed; and

* learning parameter, B(8 € [0, 1]), which manipulates the adjustments to the
weight vector W), where node / is the chosen cluster which fulfils the vigilance
match.

If B = 1, the learning process is considered fast. Otherwise, it is called slow learning. A
special type of learning process, which is termed as fast-commit slow-recode, is
characterized by applying fast learning for uncommitted F» nodes and slow learning
for committed F5 nodes. The training algorithm for the Fuzzy ART network is given in
Figure 4.

Intelligent video categorization engine

In an attempt to extract semantic meaning from video footage, Haering et al. (2000)
have proposed a three-stage algorithm for detecting hunts in wildlife video. In the first
stage, they extract low-level features from the video and use a back-propagation ANN
to classify image regions into objects such as sky, grass, animal, etc. Next, they
generate shot descriptors that attempt to link objects with their temporal and spatial
relationships. Finally, they manually design an event inference mechanism based on a
finite state machine to specifically detect hunting sequences in video.

In this research, we take a significantly different approach towards achieving some
form of machine understanding of video footage. In particular, we use ANN to perform
event inference (categorization). Prior to that, we apply spatio-temporal VO
segmentation techniques to isolate main objects from the background at the
beginning of each shot. Low-level features, such as color and texture, provide spatial
cues and regions of homogeneity. At the same time, motion information obtained after
global motion compensation provides important temporal cues for segmentation. In
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Figure 4.
Training algorithm for
Fuzzy ART

Step 1: Initialize the weights of all weight vectors to | and set all the 7, layer nodes to
uncommitted.

Step 2:  Apply complement coding to the M-dimensional input vector. The resultant complement
coded vector I is of 2M-dimensions.

c c c
l=(a,a )=((J,,...,a_”,a1 1---10_!.;)
; = o e .
where a; =1-a,, forie[l, M].

Step 3:  Compute the choice function value for every node of the F; layer. For the complement
coded vector I and node j of F; layer, the choice function T; is defined as

ITAW, |

T,(I)=——
a+|W, |

where W, is the weight vector of node /, and

a is the choice parameter.
The fuzzy AND operator » is defined by (P » Q); = min(p; g,), and the norm | | is defined

M
as[P= Y |p).
i=l
Step 4:  Find the node J of the F; layer which gives the largest choice function value.
T, =max{T,:j=1...N}
The output vector Y of the layer F, is thus given by y,= 1 and y; =0 forj = J.

Step 5:  Determine if resonance occurs by checking if the chosen node J/ meets the vigilance
threshold.

[TAW,|
—_—=
[T]

where pis the vigilance parameter.
If resonance occurs, the weight vector W, is updated and the new W, is given by:

W™ = BAAWS)+(1- BYWS

Otherwise, the value of the choice function T is set to 0. Repeat Steps 4 and 5 until a
chosen node meets the vigilance threshold.
For every input pattern in the training set, perform Steps 2 to 5.

Repeat the whole process until the weights in all weight vectors remain unchanged.

our experiments, we track up to two objects of interest in each video shot. The
segmented objects are then verified by the human operator. This represents the only
human intervention in the online categorization process, and is necessary because
subsequent processing relies heavily on successful VO segmentation at this initial
stage. Vital information about the objects such as color, texture, etc. is stored for
subsequent event categorization. After segmentation, the objects are tracked to provide
trajectory information for subsequent event categorization. If occlusion occurs at any
time during VO tracking, a linear predictor is used to complete the trajectory of the
object in question.

The above pre-ANN steps, which are summarized in Figure 5, are employed to
process each video shot for both offline ANN training and online categorization. In fact,
the goal of the above steps is to characterize each video shot using a feature vector. For
offline ANN training, the vectors obtained from the video shots are used to train the
ANNSs. This results in clusters of similar events. To complete the offline training
process, a simple cluster-to-category mapping is performed to label the clusters. During



Segment video footage into video shots based on a color histogram analysis

For each video shot do
Repeat
Perform global motion compensation, extract real motion information and low-level features
Until Human verification of VO segmentation OK

Begin VO tracking
Repeat
If occlusion detected
Activate linear prediction
Else
Continue tracking
Update trajectory information
Until end of shot

Collect all relevant information (motion, low-level features, trajectories, etc.) to form feature vector

If video footage = training exemplar

Use feature vector for offline ANN training
Else

Use feature vector for online categorization
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Figure 5.
Pre-ANN processing
algorithm

online categorization, the incoming video shots are also subjected to the pre-ANN steps
to obtain a feature vector for each video shot. Categorization then matches the best
category for the video shot based on the feature vector.

Scene change detection

Scene change detection divides a video footage into distinct scenes (video shots) as
shown in Figure 6. There are two reasons for treating each video shot as a basic video
unit. First, from an implementation point of view, objects may totally change in a scene
change, so in most cases meaningful tracking is not achievable across shots. From the
user’s point of view, each video shot describes a semantically meaningful event. We
employ a simple color histogram based analysis to determine when scene change
occurs. In addition, a new boundary marker is also inserted if the global motion
changes significantly. This ensures that excessive global motion also triggers a new
categorization process, as this is likely to indicate semantically significant changes.

Global motion compensation

In general, video scenes contain foreground objects that move in relation to a relatively
stationary background. However, the video capture process also introduces global
motion due to camera movement, etc. In order to track semantically meaningful objects,
it is necessary to isolate individual objects’ movement from the background with global
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Figure 7.
Four patch locations for
global motion estimation

motion compensation. Suppose global motion has transformed a point in frame F; from
coordinates (x, ) to (x', ¥), we employ a six-parameter affine model to estimate the global
motion (Biering, 1988). Let 0.(x, ) and 9,(x,y) be the optical flow vectors at (x, ¥), then,

D,y =4 —x=a1x+ay+as

Dy, ) =y —y=ax+asy + as

Based on this affine model, we estimate the six parameters a;, as, .. ., ag using the least
median of squares method described in (Rousseeuw and Leroy, 1987).

In order to enhance the computational efficiency, we do not perform global
motion calculations on the whole frames. Instead, we perform the calculations on four
32 X% 32 patches arranged in a cross configuration as shown in Figure 7.

Feature extraction and spatio-temporal VO segmentation

Important features that we extract from each video shot include both inter-frame
motion and intra-frame low-level image properties. Motion information is used for both
temporal segmentation and subsequent VO tracking to obtain trajectory information of
objects of interest. On the other hand, since our spatial VO segmentation relies on
morphological operations, low-level image properties are not used in the segmentation
process, but are extracted to characterize each shot. The information thus obtained is
used to partially form the feature vector for each shot.

For VO segmentation, we adopt a spatio-temporal approach as follows. First, spatial
segmentation is applied to individual frames to divide the entire 2D frame into
homogeneous regions based on low-level properties such as intensities. Unnecessary
details such as texture information are removed using morphological filters: the
morphological opening operator (F;) is used to remove unwanted highlight details and
the morphological closing operator ¢(F;), is used to remove unwanted shadow details.

Y(Fi(x, ) = 8(e(Fi(x,9)))

e(Fi(x, ) = e(8(Fi(x,)))

Morphological opening and closing are in turn defined by morphological dilation and
erosion: the y(F;) operation is essentially a morphological erosion &(F;) followed by a
morphological dilation 8(F;), whereas ¢(F;) is the reverse operation. In all cases, a flat
structuring element is used for the morphological operations. 8(F;) and &(F;) are in turn
defined as follows for all (p,q) in the ROL




e(F;(x,y)) = min(F;(x + 9,y + @)

8(Fi(x,y)) = max(I;(x — p,y — q))

A morphological gradient operator is then used to obtain region boundary information.
The morphological gradient is obtained simply by subtracting e(F; (xy)) from 8(F;
(x,y)). Morphological gradients obtained using symmetrical structuring elements are
preferable to derivative gradients as they depend less on edge directionality than the
latter. Next, the local gradient minima in each F; are used as seeds for region growing.
In this research, the watershed algorithm (Najman and Schmitt, 1994) is adopted for
region growing. However, region-growing methods tend to produce over-segmented
frames due to gradient noise. Typically, this results in isolated regions that should be
connected to form a semantically meaningful object. Thus, it is necessary to apply
region merging to the over-segmented frame. This is performed by a combination of
similarity measure relaxation and morphological erosion.

Temporal segmentation relies on the isolation of background motion using
global motion estimation described above. Then, to obtain relevant object motion
information, we consider each pair of frames in turn and attempt to determine an
inter-frame difference to isolate significant object movement. Suppose [*;_; represents
the previous frame that has received global motion compensation, then we can
calculate:

A:

Fi_FIi—l‘

such that for those regions where A is less than a threshold 7;, we consider the
residue motion to be insignificant typically due to such physical phenomena as
swaying plants or moving clouds. On the other hand, if A is greater than another
threshold T, we consider the residue motion to be important. Based on this A, we
adopt the histogram projection technique described in Haering et al. (2000) to obtain
the relevant motion information, including the object center position (centroid), as
well as its height and width. An advantage of this approach is that it allows iterative
processing for multiple objects, which is important for us as we allow a maximum of
two objects during tracking.

Low-level images properties are those originally used in classical image processing,
such as color, intensity and texture information. For example, Brunelli and Mich (2000)
have proposed the use of a dissimilarity measure on a multidimensional histogram for
discrimination between different images. From our point of view, two important
findings reported are:

(1) color and intensity are much better visual descriptors than edge information,
particularly for videos; and

(2) the co-occurrence of color (or intensity), defined as a 2D histogram obtained by
partitioning the image space into pairs of pixels by means of a binary spatial
relation, is a more effective visual descriptor than color (or intensity) alone.

However, the improvement in using co-occurrence is much more pronounced with still
images than videos. In fact, the improvement with videos is only marginal. Thus, in the
interest of simplicity and computational speed, we only record color and intensity
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Table 1.
Texture features from
three models

information. In particular, we record the normalized red R, green G and blue B
components, as well as the Intensity 1. On the other hand, gray-level co-occurrence is
effective for texture features. In fact, the use of a combination of models and measures
has been reported to provide far better discrimination than using them singularly (Jain
and Zongker, 1997). In this research, we use measures from three different models: local
statistics, gray level co-occurrence matrix (GLCM), and lognormal random field model.
For GLCM, we use six different measures as described in Haralick et al (1973) and
Conners and Harlow (1980). Suppose P(, 7, d, 6) represents the GLCM of pixels where ¢
and j are the matrix indices, d is the distance between the pixels, and 0 is the
orientation. Then we can obtain p(, j, d, 6), which is P(, j, d, 6) normalized by R(d, 6)
such that the entries of the normalized matrix sum to unity (Haering et al, 2000;
Haralick et al., 1973; Conners and Harlow, 1980).

pG,j,d,0) = P(@,j,d, 0)/R(d, 6)

Then, for example, the angular second moment (or energy E(d, 6)) that gives more
weight to textures having a sparse co-occurrence matrix is given by:

Ed,.0) =% ((.J.d,0)
] 2

The other GLCM measures are contrast, difference angular second moment, entropy,
inertia, and correlation as defined in Haralick et al (1973) and Conners and Harlow
(1980). By varying the orientation 6 in four regular intervals between 0 and , we
obtain a total of twenty-four GLCM features. The texture features used are summarized
in Table I. These texture features together with color information contribute 33 entries
towards the dimensionality of the feature vector representing each video shot.

VO tracking and occlusion handling

Following the interactive verification of VO segmentation, the segmented objects are
tracked to obtain trajectory information. Our current implementation assumes that the
objects of interest are either rigid (e.g. vehicles) or articulate and slightly deformable
(e.g. persons). Thus, amorphous objects such as clouds could not be handled. The
justification is that modeling only rigid and articulate objects would already provide

Model Measure

Local statistics Mean

Local statistics Power-to-mean ratio
Local statistics Skewness

GLCM Angular second moment
GLCM Contrast

GLCM Difference angular second moment
GLCM Entropy

GLCM Inertia

GLCM Correlation

Lognormal random field Variance

Lognormal random field Mean (logarithmic)




enormous potential for practical applications (e.g. traffic monitoring, security
surveillance).

For tracking and occlusion handling of objects, we focus on the inter-frame
incremental displacement of both the centroid and head top point of each object. The
head top point, which is defined as the highest point of a segmented object (Shao ef al,
2000), 1s used with the object centroid to account for a limited amount of deformation.
To obtain the trajectory of each object, the start locations of the object centroid (x.o, Vco)
and head top point (a9, Y1o) are first recorded. Up to ten additional locations are stored
for each of the centroid and head top point. In particular, a new location is stored every
time the actual pixel location deviates from the predicted location by an angle « (15° in
our experiments) in the 2D plane. Figure 8 shows the tracking process, which shows a
slight deformation as the centroid and head top point have slightly different
trajectories.

To handle occlusion, we use a combination of linear prediction and nearest
Euclidean distance matching to fill in the missing trajectory information as shown in
Figure 9, where an object is taken as a whole for illustration purposes (actually the
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Figure 8.
Object tracking

Object 1 \
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Observed Object (assumed to be Object 1)

Observed Object
(assumed to be Object 2)

observed trajectory

--------------- predicted trajectory

Figure 9.
Occlusion handling
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centroid and head top point are considered separately). When a tracked object is
obscured by another, its most recent position is recorded. As soon as it reemerges, a
simple linear prediction algorithm is used to derive its missing trajectory. If an
occlusion involves multiple objects, then matching is performed to compare the
Euclidean distance between the predicted locations and the actual observed locations
to distinguish between the objects. In addition, the distance between the centroid and
head top point of each object is also taken into account when distinguishing between
objects following an occlusion. When taken together, these strategies are reasonably
robust and efficient in terms of computational effort.

Video shot feature vector generation

Having obtained all the necessary low-level descriptions and trajectory information,
the next step is to produce a feature vector that characterizes the video shot in question.
If the video shot comes from a training set intended for ANN training, then the vector is
fed to the ANN (SOM or Fuzzy ART as the case may be) to generate the appropriate
ANN model using the training algorithms presented above. Otherwise, the vector is
used for cluster matching during online categorization.

From the above discussion, the basic feature vector for each video shot has 77
elements. The basic vector must first be suitably transformed using a weight
multiplication step, followed by normalization. Weight multiplication is used to
multiply each of the elements of the basic vector by a weight to indicate the relative
importance of the elements. All the weights are then adjusted for each training session
of the ANN. Normalization is then performed on the weighted vector according to a
common Euclidean length. The resultant feature vector is then fed to the ANN for
training/categorization.

ANN model generation

The two ANNs, SOM and Fuzzy ART, are trained to form ANN models for subsequent
online categorization. Since the feature vector has a dimension of 77, the SOM network
1s constructed with 77 inputs. After several training experiments, we have decided to
construct the network with a square array of output neurons with a dimension of 8 X 8
for a good balance between accuracy and training complexity. In particular, we found
that dimensions smaller than 8 X 8 gave inadequate discrimination performance with
many clusters containing mixtures of different events. On the other hand dimensions
larger than 8 X 8 did not show any significant improvement. Also, to fulfil Kohonen's
requirement (Kohonen, 1995), the network is trained for 32,000 iterations or 500 times
larger than the total number of output neurons. The initial learning rate is set to 0.6 and
is linearly decreased in each iteration towards the final learning rate of 0.01. The value
of the initial neighborhood size is 5 and decreased once every 5,000 iterations.

The Fuzzy ART network is constructed with 77 nodes at its F, layer. Due to
complement coding, there are twice as many nodes at the F layer. To compare Fuzzy
ART with the SOM, we give the Fuzzy ART network a total of 70 nodes at F layer. To
minimize the training time, we have chosen a small value of 0.1 for « (Carpenter et al.,
1991). p, which affects the number of clusters generated by the network, is set to 0.68
after several training experiments to produce a total of clusters close to 64. 8 is set to 1
for uncommitted F» node and 0.5 for committed F» node, since we use fast-commit
slow-recode as our updating scheme



Cluster-to-category mapping

At the conclusion of each ANN training session, clusters of video shots are formed with
the property that the similarity of intra-cluster members is maximized and the
similarity between different clusters is minimized. The purpose of cluster-to-category
mapping is to map each cluster to one of the predefined meaningful events. In this
research, we have defined 12 events under two major topics: vehicle motion, and
human motion. Each major topic is then subdivided into specific events as shown in
Table II. In addition, multiple events are allowed concurrently. For example, if the
second and third ranking events have a matching score within 5 percent of the top
ranking event, then both of them are returned as the categorization result. Thus, a
vehicle may be found to be moving away from the viewer and from left to right on the
screen, or a person may be jumping up and down while moving towards the viewer.
Currently, up to two different objects are accounted for.

Although it might appear advantageous to adopt a hierarchical categorization of
events (Vailaya et al., 2001) according to the two major topics, this approach would lead
to error propagation. If the probability of a successful categorization of the three major
topics is x, then the categorization error € = 1 — x will be propagated to the next lower
level of event categorization. The accumulating effect of such errors means that the
overall categorization accuracy will be reduced. We therefore use a flat data structure
such that each event is equally distinct from any other. In further research, we would
like to investigate linking related events with conditional probabilities.

Experimental results

To gauge the effectiveness of our IVCE, we have conducted experiments using both
common test sequences such as “foreman” and “mobile calendar” and other motion
video footage we have captured. All test sequences are color sequences in QCIF format
(176 x 144) at 30 frames per second. In addition, we are interested in comparing the
performance of the SOM and the Fuzzy ART ANNSs, as well as analyzing successful
and unsuccessful categorization.

Major topic Event number Event

Vehicle motion Moving towards viewer

Moving away from viewer

Moving left to right

Moving right to left

Stationary

Head and shoulder view of person speaking (includes
activities such as news reading and video
conferencing applications)

Moving towards viewer

Moving away from viewer

Moving left to right

10 Moving right to left

11 Jumping up and down

12 Stationary

S Tl W N~

Human motion
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Table II.
Predefined events
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Figure 10.
VO segmentation

VO segmentation and motion tracking

First, we evaluated the effectiveness of our pre-ANN steps, in particular VO
segmentation and motion tracking, as this has a direct impact on the subsequent ANN
training and categorization. In the first test sequence “foreman”, there is a person
talking in front of a building. The person, which is the main object of interest, has
relatively little movement compared to our second sequence “mobile calendar”. In the
first sequence, the camera also moves, so global motion estimation and compensation
1s necessary. In the second sequence, we are interested in the motion of a ball against a
relatively cluttered background. The ball rolls as it moves across the screen.
Figure 10(b) and (d) show the successful VO segmentation of the main object of interest
corresponding to Figure 10(a) and (c), respectively.

The sequence in Figure 11 highlights the difficulties of tracking an object that
changes direction frequently, and occasionally goes out of frame. It shows only the
centroid’s trajectory. In this case, as with most cases with single rigid objects, the head
top point’s trajectory provides little additional information as both trajectories are
almost the same.

Comparison of the two ANNs
Using a training set of 100 video shots covering all the predefined events in roughly
equal distribution, we evaluated the training performance of the two ANNS. It should
be emphasized that we did not make use of any textual clues (such as captions) for
event inference. Where available, the use of textual information would significantly
improve the accuracy of event categorization (Babaguchi et al, 2002). Instead, we rely
on the processing of visual data alone. Since training is performed offline, we are
primarily interested in the training accuracy attained by each ANN. The results are
summarized in the top portion of Table III, which shows that SOM significantly
outperformed Fuzzy ART. Since training only has to be performed once offline, it is
better to use SOM for higher training accuracy than Fuzzy ART unless retraining is
frequently required, for example, when the actual categories are changed frequently.
To measure the online categorization accuracy of the two ANNs, we used another
set of 30 video shots distinct from the training set. The main advantage of using ANNs
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Correctly categorized Incorrectly categorized Undetermined

ANN (percent) (percent) (percent)
Offline training SOM 92 3 5

Fuzzy ART 85 4 11
Online categorization SOM 90 3 7

Fuzzy ART 83.3 6.7 10
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Figure 11.
Illustration of object
tracking

Table III.

Performance comparison
between SOM and Fuzzy
ART

in this context is the learning capability that they provide in generalizing information
beyond what has been learned during the training process. The bottom portion of
Table III summarizes the categorization accuracy of the two ANNs. SOM slightly
outperformed Fuzzy ART and in both cases the response was near instantaneous.
Another important observation is that we achieved better results, both during
offline ANN training and online categorization, with the “vehicle” shots and shots with
little foreground object motion (event numbers 1-6 and 12). This suggests that our
current implementation requires improvements for handling articulated objects. We



K would need more than the tracking of two points (centroid and head top point) to
34.6 accurately model the motion of such objects.
M

Online categorization

Figure 12 shows a number of representative test sequences used to gauge the

effectiveness of the IVCE. The first sequence represents a relatively easy shot for
800 analysis, which shows a single object of interest moving against a stationary
background without any camera motion during the shot. The IVCE successfully
inferred the shot as a vehicle moving away from the viewer. The second sequence is a
little more difficult as there are two objects of interest that move fairly close to each
other. In this case, the head top points’ trajectories provide important information for
tracking the two objects. In addition, there is also zooming and panning evident during
the shot, so global motion compensation was necessary. Again, the intelligent
categorization engine successfully inferred the shot as two vehicles moving from right
to left.

The third sequence in Figure 12 shows a vehicle moving along a tree-lined road. The
tree trunks occasionally obscure the view of the vehicle. The sequence therefore
provides an opportunity to test the occlusion handling capability of our IVCE. In this
event, it inferred the shot as a vehicle moving from right to left towards the viewer.
From the user’s viewpoint, this interpretation may or may not be acceptable. However,
this was what the system could do given the restrictive set of predefined (allowable)
categories. The forth sequence poses considerable challenge initially because the object
of interest (vehicle) blends in with its surrounding when it is distant. Successful
tracking began soon after the vehicle turned the bend and it was inferred as a vehicle
moving towards the viewer. Again, some users might find this interpretation less than

(b)

(©

Figure 12.

Selection of the test
sequences used in the
experiments

(d




adequate. Thus, sequences 3 and 4 have highlighted some of the shortcomings of the
system. While the IVCE provided some useful information about sequences 3 and 4,
more research is needed to extract more information from the video shots.

Conclusions

The ability of its machine to extract semantic understanding from video footage has
tremendous potential for interactive broadcasting and related applications. However,
this remains a difficult task as most traditional image processing and pattern
recognition techniques are inadequate. We have presented a survey of related
technologies, notably VO segmentation and motion tracking, that have been developed
towards achieving this goal. This survey of current technologies has led us to the
development of an IVCE that attempts to categorize video shots into a predefined set of
meaningful events. In particular, we use the learning capability of ANNSs, which can be
trained to exhibit human-like intelligence, to cluster similar events such that
intra-cluster similarity is maximized and inter-cluster similarity is minimized. A
simple cluster-to-category mapping is then needed to complete the event inference
process. While ANNs have been applied widely to classification textual information,
the challenge we face is to characterize video shots using a finite set of features. We
have also analyzed and compared the performance of two popular ANNs, Kohonen’s
SOM and the Fuzzy ART networks. Although it is much more efficient to train the
Fuzzy ART than the SOM, the latter provides significantly better categorization
results. Since our implementation of IVCE decouples the training phase (performed off
line in advance) and the categorization phase, SOM is a better choice than Fuzzy ART
for optimal performance.

Our results have shown that IVCE can perform well given the rather restrictive set
of predefined events and the fact that only a maximum of two objects of interest are
tracked. Further research will therefore focus on improving the IVCE by making it
solve more generic problems with a larger set of predefined events. For example, finer
granularity can be achieved by including more features into the algorithm, such as
speed estimation and distance from camera that would, for instance, distinguish
between walking and running. Also, linking related events with conditional
probabilities might further improve the categorization results. In addition, tracking
more object features points would likely improve the analysis of articulate objects.
Another research direction is to investigate the application of ANN to VO
segmentation by training an ANN to recognize semantically meaningful objects.
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